Add like
Add dislike
Add to saved papers

Using proximal remote sensing in non-invasive phenotyping of invertebrates.

Proximal imaging remote sensing technologies are used to phenotype and to characterize organisms based on specific external body reflectance features. These imaging technologies are gaining interest and becoming more widely used and applied in ecological, systematic, evolutionary, and physiological studies of plants and also of animals. However, important factors may impact the quality and consistency of body reflectance features and therefore the ability to use these technologies as part of non-invasive phenotyping and characterization of organisms. We acquired hyperspectral body reflectance profiles from three insect species, and we examined how preparation procedures and preservation time affected the ability to detect reflectance responses to gender, origin, and age. Different portions of the radiometric spectrum varied markedly in their sensitivity to preparation procedures and preservation time. Based on studies of three insect species, we successfully identified specific radiometric regions, in which phenotypic traits become significantly more pronounced based on either: 1) gentle cleaning of museum specimens with distilled water, or 2) killing and preserving insect specimens in 70% ethanol. Standardization of killing and preservation procedures will greatly increase the ability to use proximal imaging remote sensing technologies as part of phenotyping and also when used in ecological and evolutionary studies of invertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app