Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Metabolic cost of human hopping.

To interpret the movement strategies employed in locomotion, it is necessary to understand the source of metabolic cost. Muscles must consume metabolic energy to do work, but also must consume energy to generate force. The energy lost during steady locomotion and, hence, the amount of mechanical work muscles need to perform to replace it can be reduced and, in theory, even eliminated by elastically storing and returning some portion of this energy via the tendons. However, even if muscles do not need to perform any mechanical work, they still must generate sufficient force to tension tendons and support body weight. This study shows that the metabolic cost per hop of human hopping can largely be explained by the cost of producing force over the duration of a hop. Metabolic cost determined via oxygen consumption is compared with theoretical predictions made using a number of different cost functions that include terms for average muscle work, force, force rate and impulse (time integral of muscle force). Muscle impulse alone predicts metabolic cost per hop as well as more complex functions that include terms for muscle work, force and force rate, and explains a large portion (92%) of the variation in metabolic cost per hop. This is equivalent to 1/effective mechanical advantage, explaining a large portion (66%) of the variation in metabolic cost per time per unit body weight. This result contrasts with studies that suggest that muscle force rate or muscle force rate per time determines the metabolic cost per time of force production in other bouncing gaits such as running.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app