Add like
Add dislike
Add to saved papers

Monocrystalline Nanopatterns Made by Nanocube Assembly and Epitaxy.

Monocrystalline materials are essential for optoelectronic devices such as solar cells, LEDs, lasers, and transistors to reach the highest performance. Advances in synthetic chemistry now allow for high quality monocrystalline nanomaterials to be grown at low temperature in solution for many materials; however, the realization of extended structures with control over the final 3D geometry still remains elusive. Here, a new paradigm is presented, which relies on epitaxy between monocrystalline nanocube building blocks. The nanocubes are assembled in a predefined pattern and then epitaxially connected at the atomic level by chemical growth in solution, to form monocrystalline nanopatterns on arbitrary substrates. As a first demonstration, it is shown that monocrystalline silver structures obtained with such a process have optical properties and conductivity comparable to single-crystalline silver. This flexible multiscale process may ultimately enable the implementation of monocrystalline materials in optoelectronic devices, raising performance to the ultimate limit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app