Add like
Add dislike
Add to saved papers

Aerosol contributions at an urban background site in Eastern Mediterranean - Potential source regions of PAHs in PM 10 mass.

In this paper, two backward air mass trajectory-based models (Potential Source Contribution Function [PSCF] and Concentration Weighted Trajectory [CWT]) were combined, aiming to identify sources and factors defining the load of PM in the city of Limassol (Cyprus). The study also focused on the determination of atmospheric pathways enriching the aerosol phase of four carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs): Benzo(a)pyrene (BaP), Benzo(a)anthracene (BaA), Benzo(b)fluoranthene (BbF) and Benzo(k)fluoranthene (BkF), in PM10 mass. The analysis was performed on a 0.5°·0.5° resolution grid for the two-year period 2011-2012. During cold seasons, regional airflows triggered the accumulation of locally produced PM2.5 , while the impact of dust plumes originated from deserts in NE Africa, Syria and the Middle East, was apparent on PM2.5 and principally on PMCOARSE levels. On the contrary, within warm seasons, weaker dust PMCOARSE contributions were detected in Limassol from areas in Egypt and Libya. Raised particulate-phase PAH concentrations in Limassol were clearly related to air parcels reaching Cyprus via continental areas. The use of outdated technologies for heating and transportation in Turkey and Syria, and fire events in central Turkey, are possible sources of exogenous PAHs throughout cold and warm period respectively. The influence of clean marine air masses dropped the levels of PAH compounds in all seasons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app