Add like
Add dislike
Add to saved papers

High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors.

Small 2017 April 29
Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high-performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE))/barium titanate (BaTiO3 ) for energy harvesting and highly sensitive self-powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF-TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm(-2) , which an enhancement by a factor of 7.3 relatives to the pristine P(VDF-TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF-TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self-powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app