Add like
Add dislike
Add to saved papers

Variation in the toxicity of sediment-associated substituted phenylamine antioxidants to an epibenthic (Hyalella azteca) and endobenthic (Tubifex tubifex) invertebrate.

Chemosphere 2017 August
Substituted phenylamine antioxidants (SPAs) are produced in relatively high volumes and used in a range of applications (e.g., rubber, polyurethane); however, little is known about their toxicity to aquatic biota. Therefore, current study examined the effects of chronic exposure (28 d) to four sediment-associated SPAs on epibenthic (Hyalella azteca) and endobenthic (Tubifex tubifex) organisms. In addition, acute (96-h), water-only exposures were conducted with H. azteca. Mortality, growth and biomass production were assessed in juvenile H. azteca exposed to diphenylamine (DPA), N-phenyl-1-napthylamine (PNA), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (DPPDA), or 4,4'-methylene-bis[N-sec-butylaniline] (MBA). Mortality of adult T. tubifex and reproduction were assessed following exposure to the four SPAs. The 96-h LC50s for juvenile H. azteca were 1443, 109, 250, and >22 μg/L and 28-d LC50s were 22, 99, 135, and >403 μg/g dry weight (dw) for DPA, PNA, DPPDA, and MBA, respectively. Reproductive endpoints for T. tubifex (EC50s for production of juveniles > 500 μm: 15, 9, 4, 3.6 μg/g dw, for DPA, PNA, DPPDA, and MBA, respectively) were an order of magnitude more sensitive than endpoints for juvenile H. azteca and mortality of adult worms. The variation in toxicity across the four SPAs was likely related to the bioavailability of the sediment-associated chemicals, which was determined by the chemical properties of the SPAs (e.g., solubility in water, Koc). The variation in the sensitivity between the two species was likely due to differences in the magnitude of exposure, which is a function of the life histories of the epibenthic amphipod and the endobenthic worm. The data generated from this study will support effect characterization for ecological risk assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app