Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of escitalopram and paroxetine on mTORC1 signaling in the rat hippocampus under chronic restraint stress.

BMC Neuroscience 2017 April 27
BACKGROUND: Recent studies have suggested that the activation of mammalian target of rapamycin (mTOR) signaling may be related to antidepressant action. Therefore, the present study evaluated whether antidepressant drugs would exert differential effects on mTOR signaling in the rat hippocampus under conditions of chronic restraint stress. Male Sprague-Dawley rats were subjected to restraint stress for 6 h/days for 21 days with either escitalopram (10 mg/kg) or paroxetine (10 mg/kg) administered after the chronic stress procedure. Western blot analyses were used to assess changes in the levels of phospho-Ser2448 -mTOR, phospho-Thr37/46 -4E-BP-1, phospho-Thr389 -p70S6 K, phospho-Ser422 -eIF4B, phospho-Ser240/244 -S6, phospho-Ser473 -Akt, and phospho-Thr202 /Tyr204 -ERK in the hippocampus.

RESULTS: Chronic restraint stress significantly decreased the levels of phospho-mTOR complex 1 (mTORC1), phospho-4E-BP-1, phospho-p70S6 K, phospho-eIF4B, phospho-S6, phospho-Akt, and phospho-ERK (p < 0.05); the administration of escitalopram and paroxetine increased the levels of all these proteins (p < 0.05 or 0.01). Additionally, chronic restraint stress reduced phospho-mTORC1 signaling activities in general, while escitalopram and paroxetine prevented these changes in phospho-mTORC1 signaling activities.

CONCLUSION: These findings provide further data that contribute to understanding the possible relationships among mTOR activity, stress, and antidepressant drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app