Add like
Add dislike
Add to saved papers

Physical and Functional Characterization of a Viral Genome Maturation Complex.

Biophysical Journal 2017 April 26
Genome packaging is strongly conserved in the complex double-stranded DNA viruses, including the herpesviruses and many bacteriophages. In these cases, viral DNA is packaged into a procapsid shell by a terminase enzyme. The packaging substrate is typically a concatemer composed of multiple genomes linked in a head-to-tail fashion, and terminase enzymes perform two essential functions: 1) excision of a unit length genome from the concatemer (genome maturation) and 2) translocation of the duplex into a procapsid (genome packaging). While the packaging motors have been described in some detail, the maturation complexes remain ill characterized. Here we describe the assembly, physical characteristics, and catalytic activity of the λ-genome maturation complex. The λ-terminase protomer is composed of one large catalytic subunit tightly associated with two DNA recognition subunits. The isolated protomer binds DNA weakly and does not discriminate between nonspecific DNA and duplexes that contain the packaging initiation sequence, cos. The Escherichia coli integration host factor protein (IHF) is required for efficient λ-development in vivo and a specific IHF recognition sequence is found within cos. We show that IHF and the terminase protomer cooperatively assemble at the cos site and that the small terminase subunit plays the dominant role in complex assembly. Analytical ultracentrifugation analysis reveals that the maturation complex is composed of four protomers and one IHF heterodimer bound at the cos site. Tetramer assembly activates the cos-cleavage nuclease activity of the enzyme, which matures the genome end in preparation for packaging. The stoichiometry and catalytic activity of the complex is reminiscent of the type IIE and IIF restriction endonucleases and the two systems may share mechanistic features. This study, to our knowledge, provides our first detailed glimpse into the structural and functional features of a viral genome maturation complex, an essential intermediate in the development of complex dsDNA viruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app