Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.

Cerebellum 2017 August
The vestibulo-ocular reflex (VOR) can be viewed as an adaptive control system that maintains compensatory eye movements during head motion. As the cerebellar flocculus is intimately involved in this adaptive motor control of the VOR, the VOR has been a popular model system for investigating cerebellar motor learning. Long-term depression (LTD) and long-term potentiation (LTP) at the parallel fiber-Purkinje cell synapses are considered to play major roles in cerebellar motor learning. A recent study using mutant mice demonstrated cerebellar motor learning with hampered LTD; the study concluded that the parallel fiber-Purkinje cell LTD is not essential. More recently, multiple forms of plasticity have been found in the cerebellum, and they are believed to contribute to cerebellar motor learning. However, it is still unclear how synaptic plasticity modifies the signal processing that underlies motor learning in the flocculus. A computational simulation suggested that the plasticity present in mossy fiber-granule cell synapses improves VOR-related sensory-motor information transferred into granule cells, whereas the plasticity in the molecular layer stores this information as a memory under guidance from climbing fiber teaching signals. Thus, motor learning and memory are thought to be induced mainly by LTD and LTP at parallel fiber-Purkinje cell synapses and by rebound potentiation at molecular interneuron-Purkinje cell synapses among the multiple forms of plasticity in the cerebellum. In this study, we focused on the LTD and LTP at parallel fiber-Purkinje cell synapses. Based on our simulation, we propose that acute VOR motor learning accomplishes by simultaneous enhancement of eye movement signals via LTP and suppression of vestibular signals via LTD to increase VOR gain (gain-up learning). To decrease VOR gain (gain-down learning), these two signals are modified in the opposite directions; namely, LTD suppresses eye movement signals, whereas LTP enhances vestibular signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app