Add like
Add dislike
Add to saved papers

Realization of multiphoton lasing from carbon nanodot microcavities.

Nanoscale 2017 May 12
The use of organosilane chains to link carbon nanodots (CDs) through organosilane surface functional groups is proposed to improve the efficiency of multiphoton absorption. As a result, a large absorption coefficient of 1.16 × 10-6 cm5 per GW3 is obtained and four-photon luminescence under 1900 nm excitation is observed from the CDs at room temperature. Furthermore, a CD laser, which demonstrates random lasing under three-photon (i.e. 1400 nm) excitation, can be realized by sandwiching a CD film between a quartz substrate and a dielectric mirror. The formation of strongly confined microcavities, which arise from the non-uniform distribution of refractive indices inside the CD film, is attributed to the realization of lasing emission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app