Add like
Add dislike
Add to saved papers

Al-Coated Conductive Fibrous Filter with Low Pressure Drop for Efficient Electrostatic Capture of Ultrafine Particulate Pollutants.

Here, we demonstrate a new strategy of air filtration based on an Al-coated conductive fibrous filter for high efficient nanoparticulate removals. The conductive fibrous filter was fabricated by a direct decomposition of Al precursor ink, AlH3 {O(C4 H9 )2 }, onto surfaces of a polyester air filter via a cost-effective and scalable solution-dipping process. The prepared conductive filters showed a low sheet resistance (<1.0 Ω sq-1 ), robust mechanical durability and high oxidative stability. By electrostatic force between the charged fibers and particles, the ultrafine particles of 30-400 nm in size were captured with a removal efficiency of ∼99.99%. Moreover, the conductive filters exhibited excellent performances in terms of the pressure drop (∼4.9 Pa at 10 cm s-1 ), quality factor (∼2.2 Pa-1 at 10 cm s-1 ), and dust holding capacity (12.5 μg mm-2 ). After being cleaned by water, the filtration efficiency and pressure drop of the conductive filter was perfectly recovered, which indicates its good recyclability. It is expected that these promising features make the conductive fibrous filter have a great potential for use in low-cost and energy-efficient air cleaning devices as well as other relevant research areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app