Add like
Add dislike
Add to saved papers

GoDec+: Fast and Robust Low-Rank Matrix Decomposition Based on Maximum Correntropy.

GoDec is an efficient low-rank matrix decomposition algorithm. However, optimal performance depends on sparse errors and Gaussian noise. This paper aims to address the problem that a matrix is composed of a low-rank component and unknown corruptions. We introduce a robust local similarity measure called correntropy to describe the corruptions and, in doing so, obtain a more robust and faster low-rank decomposition algorithm: GoDec+. Based on half-quadratic optimization and greedy bilateral paradigm, we deliver a solution to the maximum correntropy criterion (MCC)-based low-rank decomposition problem. Experimental results show that GoDec+ is efficient and robust to different corruptions including Gaussian noise, Laplacian noise, salt & pepper noise, and occlusion on both synthetic and real vision data. We further apply GoDec+ to more general applications including classification and subspace clustering. For classification, we construct an ensemble subspace from the low-rank GoDec+ matrix and introduce an MCC-based classifier. For subspace clustering, we utilize GoDec+ values low-rank matrix for MCC-based self-expression and combine it with spectral clustering. Face recognition, motion segmentation, and face clustering experiments show that the proposed methods are effective and robust. In particular, we achieve the state-of-the-art performance on the Hopkins 155 data set and the first 10 subjects of extended Yale B for subspace clustering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app