Journal Article
Review
Add like
Add dislike
Add to saved papers

Animal models of Wilson disease.

Wilson disease (WD) is caused by ATPase copper-transporting beta (ATP7B) mutations and results in copper toxicity in liver and brain. Although the defective gene was identified in 1993, the specific mechanisms underlying copper toxicity and the remarkable phenotypic diversity of the disease are still poorly understood. Animal models harboring defects in the ATP7B homolog have helped to reveal new insights into pathomechanisms of WD. Four rodent models with ATP7B gene defects have been described - the Long-Evans Cinnamon (LEC) rat, inbred mouse models (toxic milk (tx), the Jackson Laboratory toxic milk (tx-j)), and the genetically engineered ATP7B-/- (knockout) mouse - all of which develop liver disease to different extents. Copper accumulation in parts of the brain accompanied by some neurologic involvement was revealed in LEC rats and tx/tx-j mice, but the pathology is less severe than human neurologic WD. Several dogs show hepatic copper toxicity resembling WD; however, brain involvement has not been observed and the underlying genetic defect is different. These models are of great value for examination of copper distribution and metabolism, gene expression, and investigation of liver and brain pathology. The availability of disease models is essential for therapeutic interventions such as drug, gene, and cell therapy. Findings made by animal studies may facilitate the development of specific therapies to ameliorate WD progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app