Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thermodynamics of the Thermal Denaturation of Acid Molten Globule State of Cytochrome c Indicate a Reversible High-Temperature Oligomerization Process.

Biochemistry 2017 May 10
In this study, we performed differential scanning calorimetry (DSC) and pressure perturbation calorimetry (PPC) analysis of the thermal transition of cytochrome c from an acidic molten globule (MG) state with the protein concentrations of 0.5-18.2 mg/mL. DSC profiles were highly reversible and showed clear protein-concentration dependence, indicating that reversible oligomerization occurred accompanying the thermal transition from the MG state. The DSC and PPC data required at least a six-state model (MG1 ⇄ MG2 ⇄ D ⇄1 /2 I2 ⇄1 /3 I3 ⇄1 /4 I4 ) including three new oligomeric states: dimer (I2 ), trimer (I3 ), and tetramer (I4 ) in addition to the three monomeric states previously characterized. Dynamic light scattering confirmed the oligomerization during the thermal transition. The partial specific volumes of these oligomeric states were found to be smaller than those of the monomeric states, MG2 and D, indicating dehydration of hydrophobic surface or hydration of released anions may occur with the reversible oligomerization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app