Add like
Add dislike
Add to saved papers

Soy isoflavones enhance β-defensin synthesis and secretion in endometrial epithelial cells with exposure to TLR3 agonist polyinosinic-polycytidylic acid.

PROBLEM: β-defensins are important innate chemical barriers that protect the endometrium from pathogen invasion. The effects of soy isoflavones, genistein and daidzein, on the expression and secretion of porcine β-defensins (PBD) in endometrial epithelial cells were investigated under normal or poly I:C-stimulated conditions.

METHOD OF STUDY: Primary cultured porcine endometrial epithelial (PE) cells were pretreated with genistein or daidzein followed by poly I:C inoculation. During treatment, the culture media were analyzed for PBD 1-4 secretion by ELISA and the total RNA for PBD gene expression by quantitative RT-PCR.

RESULTS: Porcine endometrial epithelial cells constitutively expressed PBD 1-4 and secreted PBD-1, PBD-2, and PBD-4. Genistein and daidzein enhanced PBD-2 expression and PBD-2 and PBD-3 secretion. These compounds also potentiated PBD-2 and PBD-3 expression and secretion which were upregulated by poly I:C.

CONCLUSION: Soy isoflavones, genistein and daidzein, could be potentially used for promoting the innate host defense of endometrium against infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app