Add like
Add dislike
Add to saved papers

Co-Activation of TGFβ and Wnt Signalling Pathways Abrogates EMT in Ovarian Cancer Cells.

BACKGROUND/AIMS: The aggressive property of ovarian cancer (OC) in terms of epithelial-mesenchymal transition (EMT), proliferation and metastasis are of major concern. Different growth factors including TGFβ are associated with regulating these molecular events but the underlying mechanisms remain unclear. The aim of this report is to decipher the regulation of EMT by co-activation of TGFβ and Wnt signalling cascades in gaining malignancy.

METHODS: The expression of the different components of signalling events were analyzed by QPCR, Western blot, Immunofluorescence microscopy and flow cytometry. β-catenin promoter activity was checked by luciferase assay.

RESULTS: We observed reduced EMT in ovarian cancer cells upon co-activation with TGFβ1 and LiCl as shown by the expressions of epithelial/mesenchymal markers and the EMT promoting factor, Snail1, accompanied by decrease in the invasion and migration of the cells compared to individual pathway activation. A detailed study of the mechanism suggested reduction in the β-catenin and p-GSK3b (Ser 9) levels to be the driving cause of this phenomenon, which was reversed upon co-activation with higher concentrations of LiCl.

CONCLUSIONS: Therefore, tumourigenesis might be affected by the concentration of ligand/ growth factors for the respective signalling pathways activated in the tumour microenvironment and interaction between them might alter tumourigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app