Add like
Add dislike
Add to saved papers

Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: Implications for derived SGD estimates.

Submarine groundwater discharge (SGD) has been recognized as an important supplier of chemical compounds to the ocean that may influence coastal geochemical cycles. Radium isotopes (223 Ra,224 Ra,226 Ra, 228 Ra) and radon (222 Rn) have been widely applied as tracers of SGD. Their application requires the appropriate characterization of both the concentrations of tracers in the discharging groundwater and their distribution in the coastal water column. This study evaluates the temporal evolution of Ra isotopes and222 Rn concentrations in a dynamic subterranean estuary of a microtidal Mediterranean coastal aquifer that experiences large displacements of the fresh-saltwater interface as a necessary initial step in evaluating the influence of SGD in coastal waters. We show that changes in groundwater salinities due to the seaward displacement of the fresh-saltwater interface produced large variations in Ra activities in groundwater (by a factor of ~19, ~14, ~6, and ~11 for223 Ra,224 Ra,226 Ra and228 Ra, respectively), most importantly during rainfall events. In contrast, the222 Rn activities in groundwater oscillated only by a factor of 3 during these rainy periods. The large temporal variability in Ra activities hampers the characterization of the SGD end-member when using Ra isotopes as tracers, and thus presents a challenge for obtaining accurate SGD estimates. This study emphasizes the need to understand the hydrodynamics of coastal aquifers to appropriately constrain the Ra isotopes and222 Rn concentrations in groundwater and when applying both tracers in dynamic microtidal coastal systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app