Add like
Add dislike
Add to saved papers

Implantation of Endothelial Cells with Mesenchymal Stem Cells Accelerates Dental Pulp Tissue Regeneration/Healing in Pulpotomized Rat Molars.

INTRODUCTION: This study aimed to examine whether the implantation of mesenchymal stem cells (MSCs) with endothelial cells (ECs) accelerates pulp tissue regeneration/healing and induces dentin bridge formation in a rat model of molar coronal pulp regeneration.

METHODS: The maxillary first molars of Wistar rats were subjected to pulpotomy. Then, pulp chambers were implanted with biodegradable hydrogel-made scaffolds carrying MSCs together or without dermal microvascular ECs, and the cavities were sealed with mineral trioxide aggregate. After 14 days, pulp samples were analyzed by immunohistochemistry; messenger RNA expression of B-cell lymphoma 2 (Bcl-2), chemokine (C-X-C motif) ligand 1 (Cxcl1), CXC receptor 2 (Cxcr2), and dentin sialophosphoprotein (Dspp) by quantitative polymerase chain reaction, and protein expression of nestin and vascular endothelial growth factor by Western blotting.

RESULTS: Teeth coimplanted with MSCs and ECs showed pulp healing with complete dentin bridge formation, whereas those implanted with MSCs alone had incomplete dentin bridges. Bcl-2, Cxcl1, Cxcr2, and Dspp messenger RNA levels were significantly up-regulated in the pulp of MSC/EC-implanted teeth compared with those in MSC-implanted teeth. Immunohistochemical analysis revealed the expression of nestin in odontoblastlike cells under dentin bridges in the MSC/EC coimplanted group. The density of CD31-expressing ECs and the expression of nestin and vascular endothelial growth factor proteins were significantly up-regulated in the MSC/EC-implanted pulp compared with the MSC-implanted pulp.

CONCLUSIONS: The implantation of ECs with MSCs accelerated pulp tissue regeneration/healing and dentin bridge formation, up-regulated the expression of proangiogenic factors, and increased the density of ECs in pulpotomized rat molars.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app