Add like
Add dislike
Add to saved papers

A novel chemotherapy drug-free delivery system composed of three therapeutic aptamers for the treatment of prostate and breast cancers in vitro and in vivo.

In this study, a novel chemotherapy drug-free DNA nanocomplex composed of three therapeutic aptamers (IDA, AS1411 and apMNK2F) was designed for treatment of cancer cells. For MTT assay, PC-3 and 4T1 cells (target cells) and CHO cells (nontarget cells) were treated with apMNK2F-AS1411-IDA complex (DNA nanocomplex), as well as AS1411, IDA and apMNK2F alone. Internalization of apMNK2F-AS1411-IDA complex was analyzed by fluorescence imaging and flow cytometry analysis. In the last step, the presented DNA nanocomplex was applied for prohibition of tumor growth in vivo. The results of internalization assay verified that the developed apMNK2F-AS1411-IDA complex was remarkably internalized into PC-3 and 4T1 cells, but not into CHO cells. The results of internalization assay was confirmed by MTT assay. apMNK2F-AS1411-IDA complex was more cytotoxic in PC-3 and 4T1 cells (target) and less cytotoxic in CHO cells (nontarget). Also, the DNA nanocomplex could effectively suppress the growth of tumors in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app