Add like
Add dislike
Add to saved papers

Untapped potentials of acrylonitrile-butadiene-styrene/polyurethane (ABS/PU) blend membrane to purify dye wastewater.

Production of acrylonitrile-butadiene-styrene/polyurethane (ABS/PU) blend membrane with high rejection efficiency for disperse and vat dyes, is introduced as a facile and cost effective technique to purify textile wastewater. In this respect, membranes are produced using commercially available polymers, i.e. ABS and PU, with different compositions (ABS/PU: 100/0, 80/20, 70/30, 60/40 and 50/50 w/w) through wet casting. Casting solutions with concentration of 30 wt% are prepared using two different solvents, i.e. dimethylformamide (DMF) and N-methyl-2- pyrrolidone (NMP). The prepared membranes are characterized using a variety of analytical techniques including SEM imaging, FTIR spectroscopy, dry and wet gas permeation, evaluation of reusability, antifouling and mechanical properties, photostability, surface hydrophilicity and pure water permeability (PWP) of the produced membranes. According to the results, irrespective of solvent type, ABS/PU membranes with higher PU content have lower porosity and smaller pore size both of which contribute to enhanced dye rejection efficiency. This is while the impact of PU content on the photostability of ABS/PU membranes was found to be negligible. Additionally, the produced ABS/PU membranes exhibit good reusability and antifouling properties. However, the mechanical properties of ABS/PU membranes with higher PU contents are inferior to those with lower PU contents. This contrast highlights the prominence of optimum PU content to make a trade-off between dye rejection efficiency and mechanical properties. In this regard, ABS/PU (60/40 w/w) membrane is recognized as the one with optimum composition. Furthermore, it was found that regardless of PU content, membranes cast from DMF-based solutions exhibit superior rejection performance over those cast from NMP-based solutions. Overall, one can witness that employing ABS/PU membranes provides a meritorious and clean approach to refine disperse and vat dye wastewaters, a great threat to the environment and human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app