Add like
Add dislike
Add to saved papers

Responses of Bacterial Communities to CuO Nanoparticles in Activated Sludge System.

The main objectives of this study were to investigate the influence of copper oxide nanoparticles (CuO NPs) on wastewater nutrient removal, bacterial community and molecular ecological network in activated sludge. The results showed that long-term exposure to 1 mg/L CuO NPs induced an increase of effluent concentrations of ammonia and total phosphorus, which was consistent with the inhibition of enzyme activities of ammonia monooxygenase, nitrite oxidoreductase, exopolyphosphatase, and polyphosphate in the presence of CuO NPs. MiSeq sequencing data indicated that CuO NPs significantly decreased the bacterial diversity and altered the overall bacterial community structure in activated sludge. Some genera involved in nitrogen and phosphorus removal, such as Nitrosomonas, Acinetobacter, and Pseudomonas decreased significantly. Molecular ecological network analysis showed that network interactions among different phylogenetic populations were markedly changed by CuO NPs. For example, β-Proteobacteria, playing an important role in nutrients removal, had less complex interactions in the presence of CuO NPs. These shifts of the abundance of related genera, together with the network interactions may be associated with the deterioration of ammonia and phosphorus removal. This study provides insights into our understanding of shifts in the bacteria community and their molecular ecological network under CuO NPs in activated sludge systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app