Add like
Add dislike
Add to saved papers

Processing of acoustic signals via wavelet & Choi - Williams analysis in three-point bending load of carbon/epoxy and glass/epoxy composites.

Ultrasonics 2017 August
In this article, acoustic emission method was used for monitoring of flexural loading of GFRP (Glass fiber/epoxy composite) and CFRP (Carbon fiber/epoxy composite) via one acoustical sensor. In order to signal processing, various methods were employed such as wavelet transform, Short time Fourier transform, Choi - Williams transform and etc. Using two signal processing methods, wavelet transform and Choi - Williams transform, for monitoring of GFRP and CFRP specimens, determines strengths and weaknesses of each method and appointed the best analysis for signal processing of three point bending load of this type of composites. Based on information obtained from comparing of CFRP and GFRP, it is resulted that, the ratio of elastic modules and maximum load bearing of CFRP to GFRP is 1.36 and 3.25 respectively. Moreover, based on comparing of two analysis method results, Wavelet analysis was appointed better signal processing method for this type of load and material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app