Add like
Add dislike
Add to saved papers

Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation.

Scientific Reports 2017 April 14
High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na(+) concentrations (high Na(+)) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic high Na(+) damages the endothelial glycocalyx (eGC), induces release of inflammatory cytokines from the endothelium and promotes monocyte adhesion. Single cell force spectroscopy reveals that high Na(+) enhances vascular adhesion protein-1 (VCAM-1)-dependent adhesion forces between monocytes and endothelial surface, giving rise to increased numbers of adherent monocytes on the endothelial surface. Mineralocorticoid receptor antagonism with spironolactone prevents high Na(+)-induced eGC deterioration, decreases monocyte-endothelium interactions, and restores endothelial function, indicated by increased release of NO. Whereas high Na(+) decreases NO release, it induces endothelial release of the pro-inflammatory cytokines IL-1ß and TNFα. However, in contrast to chronic salt load (hours), in vivo and in vitro, an acute salt challenge (minutes) does not impair eGC function. This study identifies the eGC as important mediator of inflammatory processes and might further explain how dietary salt contributes to endothelialitis and cardiovascular pathologies by linking endothelial nanomechanics with vascular inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app