Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Actomyosin contractility provokes contact inhibition in E-cadherin-ligated keratinocytes.

Scientific Reports 2017 April 14
Confluence-dependent inhibition of epithelial cell proliferation, termed contact inhibition, is crucial for epithelial homeostasis and organ size control. Here we report that among epithelial cells, keratinocytes, which compose the stratified epithelium in the skin, possess a unique, actomyosin-dependent mechanism for contact inhibition. We have observed that under actomyosin-inhibited conditions, cell-cell contact itself through E-cadherin promotes proliferation of keratinocytes. Actomyosin activity in confluent keratinocytes, however, inhibits nuclear localization of β-catenin and YAP, and causes attenuation of β-catenin- and YAP-driven cell proliferation. Confluent keratinocytes develop E-cadherin-mediated punctate adhesion complexes, to which radial actin cables are connected. Eliminating the actin-to-E-cadherin linkage by depleting α-catenin increases proliferation of confluent keratinocytes. By contrast, enforced activation of RhoA-regulated actomyosin or external application of pulling force to ligated E-cadherin attenuates their proliferation, suggesting that tensile stress at E-cadherin-mediated adhesion complexes inhibits proliferation of confluent keratinocytes. Our results highlight actomyosin contractility as a crucial factor that provokes confluence-dependent inhibition of keratinocyte proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app