Add like
Add dislike
Add to saved papers

Drosophila enhancer-Gal4 lines show ectopic expression during development.

In Drosophila melanogaster the most widely used technique to drive gene expression is the binary UAS/Gal4 system. We show here that a set of nervous system specific enhancers (elav, D42/Toll-6, OK6/RapGAP1) display ectopic activity in epithelial tissues during development, which is seldom considered in experimental studies. This ectopic activity is variable, unstable and influenced by the primary sequence of the enhancer and the insertion site in the chromosome. In addition, the ectopic activity is independent of the protein expressed, Gal4, as it is reproduced also with the expression of Gal80. Another enhancer, LN2 from the sex lethal (Sxl) gene, shows sex-dependent features in its ectopic expression. Feminization of LN2 expressing males does not alter the male specific pattern indicating that the sexual dimorphism of LN2 expression is an intrinsic feature of this enhancer. Other X chromosome enhancers corresponding to genes not related to sex determination do not show sexual dimorphism in their ectopic expressions. Although variable and unstable, the ectopic activation of enhancer-Gal4 lines seems to be regulated in terms of tissue and intensity. To characterize the full domain of expression of enhancer-Gal4 constructs is relevant for the design of transgenic animal models and biotechnology tools, as well as for the correct interpretation of developmental and behavioural studies in which Gal4 lines are used.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app