Add like
Add dislike
Add to saved papers

Modelling human perception processes in pedestrian dynamics: a hybrid approach.

In this paper, we present a hybrid mathematical model describing crowd dynamics. More specifically, our approach is based on the well-established Helbing-like discrete model, where each pedestrian is individually represented as a dimensionless point and set to move in order to reach a target destination, with deviations deriving from both physical and social forces. In particular, physical forces account for interpersonal collisions, whereas social components include the individual desire to remain sufficiently far from other walkers (the so-called territorial effect). In this respect, the repulsive behaviour of pedestrians is here set to be different from traditional Helbing-like methods, as it is assumed to be largely determined by how they perceive the presence and the position of neighbouring individuals, i.e. either objectively as pointwise/localized entities or subjectively as spatially distributed masses. The resulting modelling environment is then applied to specific scenarios, that first reproduce a real-world experiment, specifically designed to derive our model hypothesis. Sets of numerical realizations are also run to analyse in more details the pedestrian paths resulting from different types of perception of small groups of static individuals. Finally, analytical investigations formalize and validate from a mathematical point of view selected simulation outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app