Add like
Add dislike
Add to saved papers

Porous SiO 2 Hollow Spheres as a Solar Reflective Pigment for Coatings.

This study starts with the synthesis of silica hollow spheres (HSs) by utilizing in situ synthesized polystyrene (PS) microspheres as the template for the deposition of a silica (SiO2 ) shell, followed by a slow gasification step in air to remove the PS core. The size of HS and the thickness of the porous SiO2 shell are tuned by varying the synthesis conditions of the PS latex and those of the sol-gel deposition, respectively. Various HS powder samples are characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy to determine their diffuse reflectance. Furthermore, they are used as the filler in an acrylic polymer matrix for the measurement of solar reflectivity on a solar spectrum reflectometer. It turns out that both cavity size and the structure of the SiO2 shell are influential in the reflection of NIR and UV-vis light, respectively. In addition, this study examines the effect on solar reflectivity of a selected metal oxide with a SiO2 HS. In conclusion, the cavity size of the HS has a strong impact on the reflectivity to NIR light whereas the shell itself affects the reflection of UV-blue light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app