Add like
Add dislike
Add to saved papers

The application of compound-specific isotope analysis of fatty acids for traceability of sea cucumber (Apostichopus japonicus) in the coastal areas of China.

BACKGROUND: Geographical origin traceability is an important issue for controlling the quality of seafood and safeguarding the interest of consumers. In the present study, a new method of compound-specific isotope analysis (CSIA) of fatty acids was established to evaluate its applicability in establishing the origin traceability of Apostichopus japonicus in the coastal areas of China. Moreover, principal component analysis (PCA) and discriminant analysis (DA) were applied to distinguish between the origins of A. japonicus.

RESULTS: The results show that the stable carbon isotope compositions of fatty acids of A. japonicus significantly differ in terms of both season and origin. They also indicate that the stable carbon isotope composition of fatty acids could effectively discriminate between the origins of A. japonicus, except for between Changhai Island and Zhangzi Island in the spring of 2016 because of geographical proximity or the similarity of food sources. The fatty acids that have the highest contribution to identifying the geographical origins of A. japonicus are C22:6n-3, C16:1n-7, C20:5n-3, C18:0 and C23:1n-9, when considering the fatty acid contents, the stable carbon isotope composition of fatty acids and the results of the PCA and DA.

CONCLUSIONS: We conclude that CSIA of fatty acids, combined with multivariate statistical analysis such as PCA and DA, may be an effective tool for establishing the traceability of A. japonicus in the coastal areas of China. The relevant conclusions of the present study provide a new method for determining the traceability of seafood or other food products. © 2017 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app