Add like
Add dislike
Add to saved papers

A new interaction between proximal and distal C-terminus of Cav1.2 channels.

Cardiac Cav1.2 channels, coupling membrane stimulation to intracellular Ca(2+) signaling, are regulated by multiple cytoplasmic factors, such as calmodulin (CaM), phosphorylation, Ca(2+), ATP and intramolecular fragments of the channel. The interaction between distal and proximal C-terminal regulatory domains (DCRD and PCRD) of Cav1.2 channel is suggested to inhibit the channel activity, while PKA-mediated phosphorylation facilitates Cav1.2 channel by releasing such an interaction. Here, we report that the interaction between the distal C-terminus (CT3) and the proximal C-terminus (CT1) are inhibited by CaM in a Ca(2+)-dependent manner. Furthermore, CT3D (a short CT3 with DCRD truncated) interacts with CT1B (a short CT1 with EF-hand and PCRD truncated), revealing a new interaction between distal and proximal C-terminus. Ca(2+)/CaM inhibited the binding of CT3D to CT1B more strongly than the binding between CT3 and CT1, implying that the interaction of DCRD/PCRD (in CT3/CT1) might cooperate with the binding of CT3D to CT1B. We name the new CT1B-binding region of CT3D as CaM-competitive domain (CCD). The electrophysiological experiments show that CT3D inhibits while CT1B facilitates Cav1.2 channel activity in inside-out patches in guinea-pig ventricular myocytes. These results suggest that distal C-terminus inhibits Cav1.2 channel through modulation of the CaM-binding property of the channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app