Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes.

Water Research 2017 June 16
Studies investigating the bioaccumulation behavior of perfluoroalkyl substances (PFASs) in aquatic macrophytes are limited. The present study involved controlled mesocosm experiments to assess uptake and elimination rate constants (ku, ke ), bioconcentration factors (BCFs) and translocation factors (TFs) of several perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in two aquatic plant species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results indicated all PFASs were readily accumulated in these aquatic macrophytes. ku and BCFs increased with increasing perfluoroalkyl chain length. For PFCAs and PFSAs with identical perfluoroalkyl chain length, the corresponding PFSA exhibited higher bioaccumulation potential. On a whole-plant basis, the bioaccumulation potential of PFASs in submerged and free-floating macrophytes were comparable, indicating sorption to plant biomass is similar in the different species. Conversely, when considering accumulation in foliage, BCFs in the free-floating macrophyte were substantially lower compared to submerged species, especially for longer-chain PFASs. Compounds with shorter perfluoroalkyl chain length (PFBS, PFPeA and PFHxA) exhibited preferential translocation to leaf tissue (TFs >1). BCFs exhibited a sigmoidal relationship with pefluoroalkyl chain length, membrane-water distribution coefficients (Dmw ), protein-water distribution coefficients (Dpw ) and organic-water partition coefficients (Koc ). For these trends, maximum BCF values were exhibited by long-chain PFCAs, with a log Dmw , log Dpw and log Koc of 6.47, 5.72 and 5.04, respectively. These findings are useful for future design and implementation of phytoremediation systems, as well for future develop of mechanistic models for predicting the environmental fate and distribution of these contaminants of concern.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app