Add like
Add dislike
Add to saved papers

Characteristics of DO, organic matter, and ammonium profile for practical-scale DHS reactor under various organic load and temperature conditions.

Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m-3  day-1 ), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the CODCr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L-1 ) and low DO (less than 1 mg L-1 ) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, CODCr , and NH3 -N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app