Add like
Add dislike
Add to saved papers

Structural and Functional State of Erythrocyte Membranes in Mice at Different Stages of Experimental Parkinson's Disease Induced by Administration of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP).

We studied some structural and functional parameters of erythrocyte membranes in mice at the late presymptomatic and early symptomatic stages of experimental Parkinson's disease induced by administration of MPTP (hemolysis, microviscosity of different regions of the lipid bilayer, LPO intensity, activity of antioxidant enzymes, and kinetic properties of acetylcholinesterase). At the presymptomatic stage, significant deviations of the studied parameters from the normal were observed; they were similar in direction and magnitude to those in humans with Parkinson's disease. At the early symptomatic stage, most parameters tended to normal. Microviscosity of bulk lipids increased at the presymptomatic stage and decreased after appearance of clinical symptoms. This dynamics probably reflects activation of compensatory mechanisms aimed at inhibition of oxidative stress triggered by the development of the pathological process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app