Add like
Add dislike
Add to saved papers

Control of Cell Alignment and Morphology by Redesigning ECM-Mimetic Nanotopography on Multilayer Membranes.

Inspired by native extracellular matrix (ECM) together with the multilevel architecture observed in nature, a material which topography recapitulates topographic features of the ECM and the internal architecture mimics the biological materials organization is engineered. The nanopatterned design along the XY plane is combined with a nanostructured organization along the Z axis on freestanding membranes prepared by layer-by-layer deposition of chitosan and chondroitin sulfate. Cellular behavior is monitored using two different mammalian cell lines, fibroblasts (L929) and myoblasts (C2C12), in order to perceive the response to topography. Viability, proliferation, and morphology of L929 are sensitively controlled by topography; also differentiation of C2C12 into myotubes is influenced by the presence of nanogrooves. This kind of nanopatterned structure has also been associated with strong cellular alignment. To the best of the knowledge, it is the first time that such a straightforward and inexpensive strategy is proposed to produce nanopatterned freestanding multilayer membranes. Controlling cellular alignment plays a critical role in many human tissues, such as muscles, nerves, or blood vessels, so these membranes can be potentially useful in specific tissue regeneration strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app