Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synthetic vaccine nanoparticles target to lymph node triggering enhanced innate and adaptive antitumor immunity.

Biomaterials 2017 June
In this study, synthetic vaccine nanoparticles (SVNPs) that efficiently targeted lymph nodes, where immune responses against foreign antigens are primed, were developed to enhance antitumor immunity. The size (20-70 nm) and surface character (amination) of poly(γ-glutamic acid)-based SVNPs were selected for effective loading and delivery (i.e., migration and retention) of model tumor antigen (OVA) and toll-like receptor 3 agonist (poly (I:C)) to immune cells in lymph nodes. Antigen-presenting cells treated with SVNP-OVA and SVNP-IC showed higher uptake of OVA and poly (I:C) and higher secretion of inflammatory cytokines (TNF-α, IL-6) and type I interferon (IFN-α, IFN-β) than those treated with OVA and poly (I:C) alone. In vivo analysis revealed higher levels of activation markers, inflammatory cytokines, and type I IFNs in the lymph nodes of mice immunized with SVNP-IC compared to those of mice in other groups. SVNP-IC-treated mice showed significantly greater in vivo natural killer cell expansion/activation (NK1.1+ cells) and CD8+ T cell response (CD8+ INF-γ+ cells) in innate and adaptive immunity, respectively. Both preventive and therapeutic vaccination of EG7-OVA tumor-bearing mice using the simultaneous injection of both SVNP-OVA and SVNP-IC induced higher antitumor immunity and inhibited tumor growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app