Add like
Add dislike
Add to saved papers

Resveratrol Attenuates Aβ-Induced Early Hippocampal Neuron Excitability Impairment via Recovery of Function of Potassium Channels.

Alzheimer's disease (AD) is an age-related neurodegenerative disease. Amyloid-β (Aβ) is not only the morphological hallmark but also the initiator of the pathology process of AD. As a natural compound found in grapes, resveratrol shows a protective effect on the pathophysiology of AD, but the underlying mechanism is not very clear. This study was to investigate whether resveratrol could attenuate Aβ-induced early impairment in hippocampal neuron excitability and the underlying mechanism. The excitability and voltage-gated potassium currents were examined in rat hippocampal CA1 pyramidal neurons by using whole-cell patch-clamp technique. It was found that Aβ25-35 increased the excitability of neurons. Resveratrol could reverse the Aβ25-35 -induced increase in the frequency of repetitive firing and the spike half-width of action potential (AP). Moreover, resveratrol can attenuate Aβ25-35 -induced decreases in transient potassium channel (I A ) and delay rectifier potassium channel (I K(DR) ) of neurons. It was also found that resveratrol could decline the increase of protein kinase A (PKA) and inhibit the activation of PI3K/Akt signaling pathway induced by Aβ25-35 . The results suggest that resveratrol alleviates Aβ25-35 -induced dysfunction in hippocampal CA1 pyramidal neurons via recovery of the function of I A and I K(DR) by inhibiting the increase of PKA and the activation of PI3K/Akt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app