Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simultaneous Measurement of Glucose-6-phosphate 3-Dehydrogenase (NtdC) Catalysis and the Nonenzymatic Reaction of Its Product: Kinetics and Isotope Effects on the First Step in Kanosamine Biosynthesis.

Biochemistry 2017 April 12
Glucose-6-phosphate 3-dehydrogenase (NtdC) is an NAD-dependent oxidoreductase encoded in the NTD operon of Bacillus subtilis. The oxidation of glucose 6-phosphate by NtdC is the first step in kanosamine biosynthesis. The product, 3-oxo-d-glucose 6-phosphate (3oG6P), has never been synthesized or isolated. The NtdC-catalyzed reaction is very slow at low and neutral pH, and its rate increases to a maximum near pH 9.5. However, under alkaline conditions, the product is not stable because of ring opening followed by deprotonation of the 1,3-dicarbonyl compound. The absorbance band due to this enolate at 310 nm overlaps with that of the other enzymatic product, NADH, complicating kinetic measurements. We report the deconvolution of the resulting spectra of the reaction to determine the rate constants and likely kinetic mechanism. In doing so, we were able to determine the extinction coefficient of the enolate of 3oG6P (23000 M-1 cm-1 ), which allowed the measurement of the first-order rate constant (5.51 × 10-3 s-1 ) and activation energy (93 kJ mol-1 ) of nonenzymatic enolate formation. Using deuterium-labeled substrates, we show that hydride transfer from carbon 3 is partially rate-limiting in the enzymatic reaction, and deuterium substitution on carbon 2 has no significant effect on the enzymatic reaction but lowers the rate of deprotonation of 3oG6P 4-fold. These experiments clearly establish the regiochemistry of the reactions. Coupling of the NtdC reaction with the subsequent step in the pathway, NtdA-catalyzed glutamate-dependent amino transfer, has a small but significant effect on the rate of NAD reduction, consistent with these enzymes working together to process the unstable metabolite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app