Add like
Add dislike
Add to saved papers

Direct Functionalization of Poly(spirophosphazene)s via the Regioselective Lithiation of the Aromatic Rings Using a Cooperative Superbase.

The direct chemical functionalization of poly(spirophosphazene) [NP(O2 C12 H8 )]n (1) can be performed by the lithiation of the aromatic rings at low temperature using Schlosser's base (Lit Bu/KOt Bu or "superbase"), and the subsequent reaction with various electrophiles such as ClSiMe3 , ClPPh2 , or MeOB(O2 C6 H12 ) (MeOBpin). The functionalized polymers, isolated in very high yields (>90%) and without degradation of the polymeric chains, have an average degree of substitution per repeat unit ranging from 0.3 (random copolymers) to a maximum of 1.0, which corresponds to the homopolymers [NP(O2 C12 H7 FG)]n (FG (functional group) =SiMe3 , PPh2 , and Bpin). NMR studies, including bidimensional high temperature experiments on silylated and deuterated polymers, show that the substitution is regioselectively occurring at the C3 carbon of the aromatic rings due to the coordination of the lithium cations to the nitrogen of the polyphosphazene chain. The introduction of functional groups on the aromatic rings leads to significant changes in the solubility (silylated polymers), Tg , and electronic properties of the material, showing how the change of substituents in the aromatic rings can lead to polyphosphazenes with properties markedly different from those of the precursor polymer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app