Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Optimized CLARITY technique detects reduced parvalbumin density in a genetic model of schizophrenia.

BACKGROUND: Novel tissue clearing technologies have, for the first time, made it possible to study intact tissue samples. This approach provides a tool for further clarifying findings from animal models of schizophrenia by studying parvalbumin-positive (PV+) interneuron density from a 3D perspective.

NEW METHOD: This study has developed an optimised CLARITY protocol, including an improved electrophoretic tissue clearing (ETC) chamber, an evaluation of antibody diffusion into cleared tissue slices, and a computational method for detecting PV+ interneurons in 3D.

RESULTS: A reduced PV+ interneuron density was found in both prelimbic and motor cortex regions of the Df(h15q13)/+ mice, while no changes were observed in the Df(h22q11)/+ mice.

COMPARISON WITH EXISTING METHOD: The developed ETC chamber enables tissue clearing of variable tissue sizes while minimizing the resistance. It was found that a high concentration of primary and secondary antibodies were necessary for sufficient antibody staining of PV+ interneurons. Additionally, the developed computational method showed improved detection rates of interneurons compared to non-processed image stacks.

CONCLUSION: Our optimization of the CLARITY technology and automated 3D counting of cells were found to be useful for quantification of PV+ interneuron density. The results may provide insight into understanding the pathophysiology underlying the phenotype observed in Df(h15q13)/+ mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app