Add like
Add dislike
Add to saved papers

The ternary complex structure of d-mandelate dehydrogenase with NADH and anilino(oxo)acetate.

Enterococcus faecium NAD-dependent d-mandelate dehydrogenase (d-ManDH) belongs to a ketopantoate reductase (KPR)-related d-2-hydroxyacid dehydrogenase family, and exhibits broad substrate specificity toward bulky hydrophobic 2-ketoacids, preferring C3-branched substrates. The ternary complex structure of d-ManDH with NADH and anilino(oxo)acetate (AOA) revealed that the substrate binding induces a shear motion of the N-terminal domain along the C-terminal domain, following the hinge motion induced by the NADH binding, and allows the bound NADH molecule to form favorable interactions with a 2-ketoacid substrate. d-ManDH possesses a sufficiently wide pocket that accommodates the C3 branched side chains of substrates like KPR, but unlike the pocket of KPR, the pocket of d-ManDH comprises an entirely hydrophobic surface and an expanded space, in which the AOA benzene is accommodated. The expanded space mostly comprises a mobile loop structure, which likely modulates the shape and size of the space depending on the substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app