Add like
Add dislike
Add to saved papers

Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress.

The present study was undertaken to examine the possible roles of sodium nitroprusside in protection against oxidative damage due to zinc toxicity in sunflower plants. Physiochemical parameters in sunflower plants exposed to Zn(2+) (100, 200 and 300 mg/kg soil) alone or combined with SNP were measured. The results showed that excess of Zn decreased plant growth, seed yield components and photosynthetic pigments content. On the other hand, Zn stress increased the level of non-enzymatic antioxidants (ascorbic acid and reduced glutathione) and enzymatic antioxidants (superoxide dismutase, ascrobate peroxidase and glutathione reductase), coupled with the appearance of novel protein bands. Furthermore, Zn stress increased Zn content in roots and shoots. The amounts of Zn in roots were higher than shoots. A marked increase in total saturated fatty acids accompanied by a decrease in total unsaturated fatty acids was observed. Exogenously application of SNP (20 μM) increased growth parameters, photosynthetic pigments content, ascorbic acid and glutathione contents, antioxidant enzyme activities and the quality of the oil in favour of the increase of unsaturated fatty acids. Moreover, SNP application increased Zn concentration in roots and inhibited Zn accumulation in shoots. Therefore, it is concluded that SNP treatment can help reduce Zn toxicity in sunflower plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app