Add like
Add dislike
Add to saved papers

The H3K27 demethylase, Utx, regulates adipogenesis in a differentiation stage-dependent manner.

Understanding the molecular mechanisms that drive adipogenesis is important in developing new treatments for obesity and diabetes. Epigenetic regulations determine the capacity of adipogenesis. In this study, we examined the role of a histone H3 lysine 27 demethylase, the ubiquitously transcribed tetratricopeptide repeat protein on the X chromosome (Utx), in the differentiation of mouse embryonic stem cells (mESCs) to adipocytes. Using gene trapping, we examined Utx-deficient male mESCs to determine whether loss of Utx would enhance or inhibit the differentiation of mESCs to adipocytes. Utx-deficient mESCs showed diminished potential to differentiate to adipocytes compared to that of controls. In contrast, Utx-deficient preadipocytes showed enhanced differentiation to adipocytes. Microarray analyses indicated that the β-catenin/c-Myc signaling pathway was differentially regulated in Utx-deficient cells during adipocyte differentiation. Therefore, our data suggest that Utx governs adipogenesis by regulating c-Myc in a differentiation stage-specific manner and that targeting the Utx signaling pathway could be beneficial for the treatment of obesity, diabetes, and congenital utx-deficiency disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app