Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Corrosion inhibition of mild steel in 1M HCl by D-glucose derivatives of dihydropyrido [2,3-d:6,5-d'] dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone.

Scientific Reports 2017 March 21
D-glucose derivatives of dihydropyrido-[2,3-d:6,5-d']-dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone (GPHs) have been synthesized and investigated as corrosion inhibitors for mild steel in 1M HCl solution using gravimetric, electrochemical, surface, quantum chemical calculations and Monte Carlo simulations methods. The order of inhibition efficiencies is GPH-3 > GPH-2 > GPH-1. The results further showed that the inhibitor molecules with electron releasing (-OH, -OCH3 ) substituents exhibit higher efficiency than the parent molecule without any substituents. Polarization study suggests that the studied compounds are mixed-type but exhibited predominantly cathodic inhibitive effect. The adsorption of these compounds on mild steel surface obeyed the Langmuir adsorption isotherm. SEM, EDX and AFM analyses were used to confirm the inhibitive actions of the molecules on mild steel surface. Quantum chemical (QC) calculations and Monte Carlo (MC) simulations studies were undertaken to further corroborate the experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app