Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Predicting herbicide mixture effects on multiple algal species using mixture toxicity models.

The validity of the application of mixture toxicity models, concentration addition and independent action, to a species sensitivity distribution (SSD) for calculation of a multisubstance potentially affected fraction was examined in laboratory experiments. Toxicity assays of herbicide mixtures using 5 species of periphytic algae were conducted. Two mixture experiments were designed: a mixture of 5 herbicides with similar modes of action and a mixture of 5 herbicides with dissimilar modes of action, corresponding to the assumptions of the concentration addition and independent action models, respectively. Experimentally obtained mixture effects on 5 algal species were converted to the fraction of affected (>50% effect on growth rate) species. The predictive ability of the concentration addition and independent action models with direct application to SSD depended on the mode of action of chemicals. That is, prediction was better for the concentration addition model than the independent action model for the mixture of herbicides with similar modes of action. In contrast, prediction was better for the independent action model than the concentration addition model for the mixture of herbicides with dissimilar modes of action. Thus, the concentration addition and independent action models could be applied to SSD in the same manner as for a single-species effect. The present study to validate the application of the concentration addition and independent action models to SSD supports the usefulness of the multisubstance potentially affected fraction as the index of ecological risk. Environ Toxicol Chem 2017;36:2624-2630. © 2017 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app