Add like
Add dislike
Add to saved papers

Endothelial long non-coding RNAs regulated by oxidized LDL.

Oxidized low-density lipoprotein (oxLDL) plays a central role in the pathogenesis of atherosclerosis, in part via an effect to promote endothelial dysfunction. In the present study, we evaluated the expression profiles of long non-coding RNAs (lncRNAs) and protein-coding mRNAs in endothelial cells following oxLDL stimulation. LncRNAs and mRNAs from human umbilical vein endothelial cells (HUVECs) were profiled with the Arraystar Human lncRNA Expression Microarray V3.0 following 24 h of oxLDL treatment (100 µg/mL). Of the 30,584 lncRNAs screened, 923 were significantly up-regulated and 975 significantly down-regulated (P < 0.05) in response to oxLDL exposure. In the same HUVEC samples, 518 of the 26,106 mRNAs screened were up-regulated and 572 were down-regulated. Of these differentially expressed lncRNAs, CLDN10-AS1 and CTC-459I6.1 were the most up-regulated (~87-fold) and down-regulated (~28-fold), respectively. Bioinformatic assignment of the differentially regulated genes into functional groups indicated that many are involved in signaling pathways among which are the cytokine receptor, chemokine, TNF, MAPK and Ras signaling pathways, olfactory transduction, and vascular smooth muscle cell function. This is the first report profiling oxLDL-mediated changes in lncRNA and mRNA expression in human endothelial cells. The novel targets revealed substantially extend the list of potential candidate genes involved in atherogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app