Add like
Add dislike
Add to saved papers

Methotrexate induced mitochondrial injury and cytochrome c release in rat liver hepatocytes.

Methotrexate (MTX) is a folic acid antagonist that is widely used to treat a variety of diseases. One of the most serious side effects of MTX therapy is hepatotoxicity. The potential molecular cytotoxic mechanisms of MTX toward isolated rat hepatocytes were investigated using Accelerated Cytotoxicity Mechanism Screening (ACMS) techniques. A concentration and time dependent increase in cytotoxicity and reactive oxygen species (ROS) formation and a decrease in mitochondrial membrane potential (MMP) were observed with MTX. Furthermore, a significant increase in MTX (300 μM)-induced cytotoxicity and ROS formation were observed when glutathione (GSH)-depleted hepatocytes were used whereas addition of N-acetylcysteine (a GSH precursor) decreased cytotoxicity. Catalase inactivation also increased MTX-induced cytotoxicity, while the direct addition of catalase to the hepatocytes decreased cytotoxicity. MTX treatment in isolated rat mitochondria caused swelling and significantly decreased adenosine triphosphate (ATP) and GSH content, and cytochrome c release. Potent antioxidants such as mesna, resveratrol and Trolox decreased MTX-induced cytotoxicity and ROS formation and increased MMP. This study suggests that MTX-induced cytotoxicity caused by ROS formation and GSH oxidation leads to oxidative stress and mitochondrial injury in rat hepatocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app