Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multiscale porous titanium surfaces via a two-step etching process for improved mechanical and biological performance.

Biomedical Materials 2017 March 16
Titanium (Ti)-based dental implants with multiscale surface topography have attracted great attention as a promising approach to enhance fixation and long-term stability of the implants, through the synergistic effect of nano- and microscale surface roughness, for accelerated bone regeneration and improved mechanical interlocking. However, structural integrity and mechanical stability of the multiscale roughened Ti surface under deformation need to be considered because significant deformation of dental implants is often induced during the surgical operation. Therefore, in this study, a well-defined nanoporous structure was directly introduced onto micro-roughened Ti surfaces through target-ion induced plasma sputtering (TIPS) with a tantalum (Ta) target, following sand-blasted, large-grit and acid-etching (SLA). This two-step etching process successfully created multiscale surface roughness on Ti with a minimal change of the pre-formed microscale roughness. Moreover, TIPS allowed the Ti surface to possess good mechanical stability under deformation and improved hydrophilicity, through altering the surface chemistry of brittle and hydrophobic SLA-treated Ti without formation of the interface between nanoporous and microporous structures. The in vitro and in vivo tests confirmed that multiscale roughened Ti significantly enhanced osteoblast attachment, proliferation and differentiation, which eventually led to improved bone regeneration and osseointegration, compared to smooth and micro-roughened Ti.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app