Add like
Add dislike
Add to saved papers

Effects of Low-Protein Diets Supplemented with Branched-Chain Amino Acid on Lipid Metabolism in White Adipose Tissue of Piglets.

This study evaluated the effect of branched-chain amino acid (BCAA) supplementation in low-protein diets on lipid metabolism in dorsal subcutaneous adipose (DSA), abdominal subcutaneous adipose (ASA), and perirenal adipose (PRA) tissues. A total of 24 piglets were allotted to four treatments, and each group was fed the adequate protein (AP) diet, low-protein (LP) diet, LP diet supplemented with BCAA (LP + B), or LP diet supplemented with twice BCAA (LP + 2B). Serum concentrations of leptin in the BCAA-supplemented treatments were higher (P < 0.01) than in the AP treatment, but lower (P < 0.01) than in the LP treatment. In DSA, the mRNA and protein levels for lipogenic-related genes were highest in the LP treatment and lowest in the LP + 2B treatment. However, in ASA and PRA, the expression levels for those genes were significantly elevated in the LP + 2B treatment. In conclusion, BCAA supplementation could alter the body fat condition, and this effect was likely modulated by the expression of lipid metabolic regulators in DSA, ASA, and PRA in a depot-specific manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app