Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural insights into the γ-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans.

Scientific Reports 2017 March 16
(+)-γ-lactamase catalyzes the specific hydrolysis of (+)-γ-lactam out of the racemic γ-lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one) to leave optically pure (-)-γ-lactam, which is the key building block of antiviral drugs such as carbovir and abacavir. However, no structural data has been reported on how the enzymes bind the γ-lactams and achieve their enantioselectivities. We previously identified an isochorismatase-like hydrolase (IHL, Mh33H4-5540) with (+)-γ-lactamase activity, which constitutes a novel family of γ-lactamase. Here, we first discovered that this enzyme actually hydrolyzed both (+)- and (-)-γ-lactam, but with apparently different specificities. We determined the crystal structures of the apo-form, (+)-γ-lactam bound, and (-)-γ-lactam bound forms of the enzyme. The structures showed that the binding sites of both (+) and (-)-γ-lactam resemble those of IHLs, but the "cover" loop conserved in IHLs is lacking in the enzyme, probably resulting in its incomplete enantioselectivity. Structural, biochemical, and molecular dynamics simulation studies demonstrated that the steric clash caused by the binding-site residues, especially the side-chain of Cys111 would reduce the binding affinity of (-)-γ-lactam and possibly the catalytic efficiency, which might explain the different catalytic specificities of the enantiomers of γ-lactam. Our results would facilitate the directed evolution and application of Mh33H4-5540 in antiviral drug synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app