Add like
Add dislike
Add to saved papers

Pyrolyzable Nanoparticle Tracers for Environmental Interrogation and Monitoring.

Environmental tracing applications require materials that can be detected in complex fluids composed of multiple phases and contaminants. Moreover, large libraries of tracers are necessary in order to mitigate memory effects and to deploy multiple tracers simultaneously in complex oil fields. Herein, we disclose a novel approach based on the thermal decomposition of polymeric nanoparticles comprised of styrenic and methacrylic monomers. Polymeric nanoparticles derived from these monomers cleanly decompose into their constituent monomers at elevated temperatures, thereby maximizing atom economy wherein the entire nanoparticle mass contributes to the generation of detectable units. A total of ten unique single monomer particles and three dual-monomer particles were synthesized using semicontinuous monomer starved addition polymerization. The pyrolysis gas chromatography-flame ionization detection/mass spectrometry (GC-FID/MS) behavior of these particles was studied using high-pressure mass spectrometry. The programmable nature of our methodology permits simultaneous removal of contaminants and subsequent identification and quantification in a single analytical step.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app