Add like
Add dislike
Add to saved papers

Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing.

BACKGROUND: Tissue engineering is a promising alternative for the development of bone substitutes; for this purpose, three things are necessary: stem cells, a scaffold to allow tissue growth and factors that induce tissue regeneration.

METHODS: To congregate such efforts, we used the bioresorbable and biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) as scaffold. For the osteoinductive factor, we used simvastatin (SIM), a drug with a pleiotropic effect on bone growth. Mesenchymal stem cells (MSCs) were cultured in PLGA containing SIM, and the bone substitute of PLGA/SIM/MSC was grafted into critical defects of rat calvaria.

RESULTS: The in vitro results showed that SIM directly interfered with the proliferation of MSC promoting cell death, while in the pure PLGA scaffold the MSC grew continuously. Scaffolds were implanted in the calvaria of rats and separated into groups: control (empty defect), PLGA pure, PLGA/SIM, PLGA/MSC and PLGA/SIM/MSC. The increase in bone growth was higher in the PLGA/SIM group.

CONCLUSIONS: We observed no improvement in the growth of bone tissue after implantation of the PLGA/SIM/MSC scaffold. As compared with in vitro results, our main hypothesis is that the microarchitecture of PLGA associated with low SIM release would have created an in vivo microenvironment of concentrated SIM that might have induced MSC death. However, our findings indicate that once implanted, both PLGA/SIM and PLGA/MSC contributed to bone formation. We suggest that strategies to maintain the viability of MSCs after cultivation in PLGA/SIM will contribute to improvement of bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app